References and Notes

- C. Chung and R. J. Lagow, J. Chem. Soc., Chem. Commun., 1078 (1972).
- L. G. Sneddon and R. J. Lagow, J. Chem. Soc., Chem. Commun., 302 (2)(1975).
- J. A. Morrison, C. Chung, and R. J. Lagow, J. Am. Chem. Soc., 97, 5015 (1975). (3)
- 5015 (1975).
 R. West and P. C. Jones, J. Am. Chem. Soc., 91, 6155 (1969).
 J. B. Collins, J. D. Dill, E. D. Jammis, Y. Apeloig, P. v. R. Schleyer,
 R. Seeger, and J. A. Pople, J. Am. Chem. Soc., 98, 18 (1976); Y. Apeloig,
 P. v. R. Schleyer, J. S. Binkley, J. A. Pople, and W. L. Jorgensen,
 Tetrahedron Lett., 43, 3923–3926 (1976).
 W. Kelmm and M. Stuck, Z. Anorg. Allg. Chem., 278, 117 (1955); Q.
 Johnson, G. S. Smith, and D. Wood, Acta Crystallogr., 18, 131 (1965).
 R. West. Adv. Chem. Ser., No. 130, 211 (1974).
 A. Stock, "Hydrides of Boron and Silicon", Cornell University Press,
 Ithaca, N.Y., 1933.
- (6)
- (8)

Contribution from the Department of Chemistry, University of Texas at Austin, Austin, Texas 78712

Direct Fluorination of Carbon Disulfide. A Practical Synthesis for Difluoromethylenebis(sulfur trifluoride)

Lawrence A. Shimp and Richard J. Lagow*

Received April 7, 1977

AIC70252Y

The compound difluoromethylenebis(sulfur trifluoride) has been previously reported only as a very minor by-product in the electrochemical fluorination of carbon disulfide to $CF_3SF_5^{-1}$ by Clifford, Haszeldine, El-Shamy, and Emeleus. The quantity produced was sufficient only to allow a boiling point and molecular weight determination to be carried out. Other fluorinations of CS_2 using AgF_2^2 or CoF_3^3 or direct fluorination in a diffusion-controlled fluorine flame⁴ have yielded SF₅CF₃, (SF₅)₂CF₂, SF₅CF₂SF₃, and SF₃CF₃, but (SF₃)₂CF₂ was never detected in any of these cases.

Our technique of direct fluorination, using low temperatures and helium dilution, has been shown to be capable of very mild fluorination.^{5,6} For this reason, reaction conditions providing a high yield of $(SF_3)_2CF_2$ were sought:

$$CS_2 \xrightarrow[-120]{F_2/He} SF_3 CF_2 SF_3$$

Experimental Section

¹⁹F NMR spectra were taken on a Varian A56-60 spectrometer at 56.4 MHz and a Varian HA-100 spectrometer at 94.1 MHz equipped with a variable-temperature probe. CFCl₃ was used as an external standard for room-temperature spectra. At low temperatures CFCl₃ was used as an internal standard and solvent. Infrared spectra were taken on a Beckman IR20A spectrometer using a Pyrex gas cell equipped with KBr windows. Mass spectra were run on a Bell and Howell Model 21-491 instrument. The molecular weight determinations were carried out in a stainless steel and Kel-F vacuum line equipped with a Wallace and Tiernan metal gauge. The four-zone cold reactor fluorination system used has been described previously.⁶

In a typical reaction, 2 g of reagent grade CS_2 was injected into the reactor in which the second zone was held at -120 °C by means of a liquid nitrogen temperature controller system. The helium flow was set to 30 cm³/min and the fluorine flow was set to $1.5 \text{ cm}^3/\text{min}$. These conditions were held for 3 days, after which the fluorine flow was terminated and the reactor warmed to room temperature. The products collected in the glass trap were transferred to a vacuum line and separated using a -78 °C trap. The materials which passed the trap were found to consist mainly of CF4 and SF4 with a trace of SF6. The material not passing the trap was pure $(SF_3)_2CF_2$. The yield based on the CS₂ injected was 60%, 3.6 g of $(SF_3)_2CF_2$.

(SF₃)₂CF₂. Calculated molecular weight, 228; found, 229. IR (cm⁻¹) 1255 (s), 1196 (s), 923 (m), 850 (s), 765 (w), 700 (vs), 578 (m), 527 (m). Mass spectral $(P - F)^+$ peak at m/e 209. ¹⁹F NMR, room temperature (neat): broad peak at -6.6 ppm (assigned to SF₃ groups), sharp peak at 88.2 ppm (assigned to CF_2). Integral ratios were 3:1. At -80 °C (in CFCl₃) the SF₃ resonance had merged into the baseline and some splitting began to appear in the methylene resonance. The sample froze before the low-temperature exchange limit was reached. Similar temperature-dependent NMR behavior has been found for other SF₃ compounds.²

(SF₅)₂CF₂. The IR spectrum was in agreement with that reported by Clifford, El-Shamy, Emeleus, and Haszeldine.¹ The mass spectrum showed a parent peak at m/e 304. The ¹⁹F NMR had three sets of peaks in the CF₂, axial S-F, and equatorial S-F regions. The spectrum was second order.

A second series of reactions was studied. The conditions were the same as the previous set for the first 3 days. Then the temperature was raised to -80 °C and the reaction allowed to continue for 3 more days. The product collection and separation were carried out in the same manner as the previous sample. The material passing the -78°C trap was found to be mainly CF₄ and SF₄ with some SF₆ and possibly CF₃SF₃ and CF₃SF₅. The material not passing the -78 °C trap was found to be a mixture of $(SF_3)_2CF_2$ and $(SF_5)_2CF_2$ in the mole ratio of 23:27 (from integration of the CF_2 peaks in the ¹⁹F NMR). Under these conditions the overall yield of $(SF_3)_2CF_2$ and $(SF_5)_2CF_2$ was found to be about 25% (0.7 g of $(SF_3)_2CF_2$ and 1.1 g of $(SF_5)_2CF_2$).

Results and Discussion

The major product of the -120 °C reaction was (SF₃)₂CF₂. The only other products, SF_4 , CF_4 , and SF_6 , were much more volatile, and by collecting the reaction products with a -78 $^{\circ}$ C trap, essentially pure (SF₃)₂CF₂ can be obtained. This feature makes this a particularly convenient synthesis.

Despite the mild fluorination conditions, about 30% of the CS_2 starting material fragmented. No significant amounts of \cdot SF₅ compounds were found under these conditions. This would lead one to assume that higher temperature fluorination would lead to more fragmentation, rather than to the production of \cdot SF₅ compounds. Yet fluorination of CS₂ by Tyczkowski and Bigelow⁴ in a controlled fluorine flame gave only about 35% CF_4 , SF_4 , and SF_6 , and led to the formation of several \cdot SF₅ compounds.

The second series of reactions was carried out in an attempt to explain this discrepancy. These reactions were run for 3 days under conditions identical with the first set in order to produce $(SF_3)_2 CF_2$ in the reactor. (The yield for this step was assumed to be about 50%. Running the reaction for less than 3 days leaves unreacted CS_2 in the reactor.) The temperature was then raised to -80 °C and the fluorination of the \cdot SF₃ compound was continued for 3 more days. The results showed that about 25% of the $(SF_3)_2CF_2$ was converted to $(SF_5)_2CF_2$, about 50% was converted to CF4 and SF4 (and possibly CF_3SF_3 and CF_3SF_5), and the rest was unchanged.

A possible explanation is that the fluorination first proceeds smoothly to $(SF_3)_2CF_2$; then further fluorination leads to $SF_3CF_2SF_4$ as an unstable intermediate. From there the intermediate can react further with fluorine to yield an •SF5 compound or decomposition products.

It is possible that at low temperatures the reactivity or reaction rate of the fluorine is reduced to the extent that SF_4 may be eliminated before the fluorination can be completed. It is also possible that as the temperature is raised, the fluorine becomes more reactive and forms sSF₅ products more readily before the loss of SF_4 can occur.

Trifluorosulfur compounds in general are useful as reagents for the conversion of carbonyl and carboxyl groups to difluoroethylene and trifluoromethyl groups.² Difluoromethylenebis(sulfur trifluoride) would be expected to behave in a similar manner and should be investigated to discover the advantages it could offer for these reactions.

Acknowledgment. Fluorine chemistry at the University of Texas is supported by the Air Force Office of Scientific Research (AFOSR-76-3031A).

Registry No. (SF₃)₂CF₂, 374-49-2; (SF₅)₂CF₂, 1512-21-6; CS₂, 75-15-0; F₂, 7782-41-4.

References and Notes

- (1) A. F. Clifford, H. K. El-Shamy, H. J. Emeléus, and R. N. Haszeldine, K. F. Chilott, H. K. El-Shainy, H. J. Entereds, and K. N. Haszeldine, J. Chem. Soc., 2372 (1953).
 W. A. Sheppard, J. Am. Chem. Soc., 84, 3058 (1962).
 G. A. Silvey and G. H. Cady, J. Am. Chem. Soc., 72, 3624 (1950).
 E. A. Tyczkowski and L. A. Bigelow, J. Am. Chem. Soc., 75, 3523 (1953).
 N. J. Maraschin and R. J. Lagow, J. Am. Chem. Soc., 94, 8601 (1972).
 N. J. Maraschin, B. D. Catsikis, L. H. Davis, G. Jarvinen, and R. J. Leosur, J. Am. Chem. Soc. 97, 513 (1975).

- Lagow, J. Am. Chem. Soc., 97, 513 (1975).
- (7) The IR spectra of these materials also showed peaks due to C-F compounds, which may have been CF₃SF₃ and CF₃SF₅. Positive identification was not possible because these materials were present in only small amounts, and the S-F IR region was dominated by SF4 bands. Separation by GC was not possible since the mixture reacted with the column.

Contribution from the School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801

Unusual Oxidation-State Stabilization of Iron Complexes by the Pyrrole-N-carbodithioate Ligand

Anton G. El A'mma and Russell S. Drago*

Received April 7, 1977 AIC70258N

The tris(N,N-diorganodithiocarbamato)iron(III), [Fe- $(S_2CNR_2)_3]$, complexes have been studied extensively¹⁻⁸ because of the considerable interest in the electronic properties of complexes derived from sulfur ligands. The spectral and magnetic properties of a large number of these complexes are very dependent on the nitrogen substituent of the dithio-carbamate^{9,10} and on temperature.^{2,9} These properties have been attributed on the one hand to the R-N-R bond angle⁹ and on the other to the inductive properties of the R substitutents.¹⁰ One of the main problems is ascertaining the inductive influence that a substituent exerts. Most investigators have employed the basicity of the parent amine toward a proton as a criterion of electron donation toward the CS_2 group. In this study we report an iron(III) dithiocarbamate with unusual redox properties which is derived from the pyrrole-N-carbodithioate ligand (I).¹¹ An improved synthesis

of this ligand is reported as well as the preparation of complexes with Cr(III), Fe(III), and Zn(II). Several of their physical properties related to the metal-ligand interactions have been studied.12

Experimental Section

(I) Syntheses. Sodium Pyrrole-N-carbodithioate. Approximately 1 M solutions of this ligand in Me₂SO were prepared as follows. Sodium hydride¹³ (2.4 g) was reacted with an excess (100 mL) of dimethyl sulfoxide.¹⁴ Freshly distilled pyrrole (7.0 mL) was then added. The resulting pale yellow solution was cooled to 20 °C in an ice bath, and carbon disulfide (6.2 mL) was slowly added. This step is exothermic and yields the deep orange-red solution of the ligand.

Bis(pyrrole-N-carbodithioato)zinc(II). Twenty milliliters of a 1 M solution of the ligand was slowly added to a stirred solution of zinc nitrate hexahydrate (3.0 g) in 100 mL of water. The yellow precipitate formed was filtered by suction, washed with water, and crystallized from methanol-water. Anal. Calcd for $C_{10}H_8N_2S_4Zn$: C, 34.33; H, 2.31; N, 8.0; Zn, 18.70. Found: C, 34.35; H, 2.37; N, 7.96; Zn, 18.51. The green tris(pyrrole-N-carbodithioato)chromium(III) was prepared in a similar fashion. It was crystallized from acetoneTable I. Abbreviations for RR'NCS,

2					
R	R'	Abbrev	R	R'	Abbrev
CH ₃	CH ₃	ME	C,H,	C,H,	ET
$n - C_4 H_9$	n-C₄H₀	NBU	n-C, H,	$n - C_6 H_{13}$	NHX
<i>i</i> -C ₄ H	i-C₄H₀	IBU	$C_{6}H_{11}$	C, H,	CHX
CH ₃	C, Ĥ,	MPH	C,H,	C, H,	EPH
-CH,CH,CH,CH,-		SPYR	-CH=CHCH=CH-		APYR

methanol. Anal. Calcd for C15H12N3S6Cr: C, 37.64; H, 2.53; N, 8.78; Cr, 10.86. Found: C, 37.54; H, 2.65; N, 9.06; Cr, 10.96.

Tris(pyrrole-N-carbodithioato)iron(III). Anhydrous ferric chloride (1.6 g) was dissolved in 100 mL of methanol and the solution was filtered. Thirty milliliters of a 1 M solution of the ligand was diluted with 10 mL of water and added dropwise to the stirred ferric solution. The almost-black precipitate that formed was filtered by suction, washed with methanol, and air-dried. It was dissolved in the minimum amount of dichloromethane, filtered, and reprecipitated with methanol. Anal. Calcd for C₁₅H₁₂N₃S₆Fe: C, 37.34; H, 2.71; N, 8.71; Fe, 11.57. Found: C, 37.48; H, 2.74; N, 8.74; Fe, 11.53.

(II) Physical Methods. Visible spectra were obtained in CHCl₃ solution on a Cary-14 instrument. Infrared spectra were recorded as KBr pellets and Nujol mulls on a Beckman IR-12 spectrophotometer. NMR spectra in CHCl₃ solution were obtained on a Varian Model EM 390B instrument. All chemical shifts were measured relative to internal Me₄Si. Magnetic susceptibilities at \sim 35 °C in CHCl₃ solution were obtained by the Evans¹⁵ method using Me₄Si as a reference on a Varian T-60 instrument. A concentric NMR tube was used. Solid-state magnetic susceptibilities were obtained at 25 °C using a Gouy balance. $[Ni(en)_3]S_2O_3$ was used¹⁶ as the calibrant. Electrochemical work was done in acetone (0.1 M in n-Bu₄NClO₄ and 10^{-4} M in the complex). Potentials were obtained vs. a saturated calomel reference electrode. Mössbauer spectra of powdered samples were obtained at room temperature using a constant acceleration Doppler-shifted ⁵⁷Co source and a 1024 channel analyzer (512 channels were used). Iron foil was recorded for calibration. Spectra were computer-fit using the program PARLORS.¹⁷

Results and Discussion

The ¹H NMR spectrum of Zn(APYR)₂ (see abbreviations in Table I) in CHCl₃ shows two multiplets of equal intensities centered at τ 2.3 and 3.6 ppm. This AA'BB' system is consistent with a structure for the ligand in which the CS_2 is bonded to the nitrogen as shown in structure I. Further evidence for this structure is obtained from the infrared spectrum of the zinc adduct in Nujol which shows the absence of the strong N-H bending and stretching modes which are found at 1146 and 3400 cm⁻¹, respectively, in pyrrole.¹⁸ The infrared spectrum of Fe(APYR)₃ is similar to that of Zn- $(APYR)_2$ in those two regions, suggesting the same ligand structure. A strong absorption at 1330 cm⁻¹ in the infrared spectra of the zinc and iron adducts is assigned to the coupled \dot{C} -N stretch of the N-CS₂⁻ residue.¹¹ We were unable to detect by NMR or infrared spectroscopy the isomeric 2pyrroledithiocarboxylate moiety (II) reported in the synthesis of Kellner et al.¹¹

Table II contains the results from Mössbauer spectroscopy, cyclic voltammetry, and magnetism of Fe(APYR), displayed simultaneously with those of other tris(N,N-diorganodithiocarbamato)iron(III) compounds for comparison. The solid-state and solution magnetic moment of $Fe(APYR)_3$ (~2.2 $\mu_{\rm B}$) indicates that it is a low-spin species. Ewald et al.⁹ have argued that the trend influencing the magnetic behavior of the ferric dithiocarbamates arises from the differences in the R-N-R bond angle in the coordinated RRNCS₂⁻. The larger this angle is, the lower is the magnetic moment of that particular ferric dithiocarbamate. This interpretation breaks down since $Fe(APYR)_3$ has a lower magnetic moment than Fe(CHX)₃ even though the expected CHX-N-CHX bond angle is larger (steric repulsions between the bulky cyclohexyl groups) than the C₂-N-C₅ bond angle of pyrrole¹⁹ (~109°). The isomer shift (δ) of Fe(APYR)₃ is essentially indistinguishable from most of the other iron(III) dithiocarbamates